
Regression Discontinuity I: Sharp RDD
Lecture 8 - Introduction to Causal Inference

Kevin Li

1 / 11



Setup

Issue: We want to find the effect of treatment D on outcome Y,
but there is a confounder.

Let us say that the scholarship is assigned to people who score
above 90% on some standardised test.

▶ 90% is our assignment threshold.
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Cutoff and Exogneity

Now, compare individuals who scored 89.9% on the exam, and
90.0% on the exam.

▶ Are these individuals very different from each other in terms
of intelligence - no! Only 0.01% seperates them.

▶ In fact, the people who scored 89.9% are likely on average the
same as people who scored 90.0%. There was just some sort
of luck/randomness (bad night’s sleep, stupid mistake) that
caused some to get 90% and others to get 89.9%.

Thus, right above and below the cutoff for receiving the treatment
(scholarship), treatment assignment is approximately
random/exogenous.

▶ Since D at cutoff is exogenous, we can find treatment effect.
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Graphical Identification
Since individuals slightly above and below the threshold are similar,
their academic performance should also be similar.

But if there is a noticable “jump” in academic performance
between 89.9% and 90.0%, that must be result of treatment. So
the jump is our causal effect ̂𝜏 .
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Regression Discontinuity

The setup of regression discontinuity is as follows:
▶ We have a treatment D and a outcome Y.
▶ Treatment D is assigned based on some running variable X

(like test-scores). Some cutoff X = c determines if a unit is
treated or not treated.

We will usually create a new adjusted running variable X̃. This is
basically the original X variable, but adjusted so the cutoff value
for treatment assignment is X̃ = 0, anything X̃ ≥ 0 means
treatment is assigned, and X̃ < 0 means no treatment.

▶ We will explore non-compliance (so when not all units follow
the cutoff) with fuzzy discontinuity in lecture 9.
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Assumption: Continuous Potential Outcomes
Assumption: if no treatment occurred, Y would have not
“jumped” at the cutoff X = c (basically Yi(0) is continuous).

▶ If Y value jump at the cutoff X = c even without treatment,
then we do not know if the jump we observe is because of the
treatment D, or of some other reason.

(We also assume Yi(1) is continuous for same reason)
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Sorting

We know RDD requires the assumption that the potential
outcomes are continuous.

The most common reason this is violated is because sorting:
▶ Sorting is when individuals i can manipulate their position

above/below the treatment.
▶ For example, if a welfare programme only allows £20,000

salary or lower individuals, some people at £22,000 might
intentionally lower their salary to qualify.

▶ But these £22,000 salary people might be different from the
people at £19,999, which messes up the continuity of Y.

The McCary density test can check if sorting is occuring. Cattaneo
et al (2024) also have a test for sorting.
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Estimating Causal Effects
We use a local linear regression (machine learning) to get best-fit
lines on both sides of the cutoff. Then, we estimate the jump.

Local Linear Regression differs from normal linear regression,
because we can weight different points differently (Kernel).

▶ In RDD, we weight points closer to the cutoff more heavily, so
we can more accurately estimate the jump
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Local Average Treatment Effect

What is the estimated τ̂ we get from looking at the
jump/discontinuity? It is the local average treatment effect
(LATE)

Recall the LATE is the average treatment effect for a set of
individuals i who meet a set of criteria.

▶ In RDD, the estimated τ̂ is the average treatment effect for
the units exactly at the cutoff X = c.

▶ We can usually generalise the LATE to individuals nearby the
cutoff X = c with no issues.

▶ However, the estimated LATE cannot be generalised to all
individuals in our study - it is possible people far from the
cutoff X = c will have drastically different treatment effects.
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Bandwidth Selection

We are interested in the jump at the cutoff. So, it is not very
useful to include data from individuals far from the cutoff.

There is a tradeoff in selecting bandwidths (how much data around
the cutoff to use).

▶ For maximum accuracy, we want as small bandwidth as
possible - only consider people with scores 89.9% and 90.0%.

▶ However, only using as small bandwidth as possible reduces
the amount of data/sample size we have, which creates much
higher variance/uncertainty.

Solution: Catanneo et al (2020, 2024) propose using the
bandwidth that minimises the mean squared error of the
predictions of the best-fit lines (since lowest MSE means most
accurate fitted lines).

10 / 11



Parametric Estimator
Generally, we prefer the local regression (machine learning)
approach unless we have very mimimal data. But we can fit
normal linear regression lines on both sides of the cutoff as follows:

Yi = α + τDi + β1X̃i + β2X̃iDi + εi

▶ The estimate of τ is our causal estimate of the LATE.
▶ β1 is the slope of the line fit for values X̃i < 0 (below the

cutoff, the side with no treatment).

▶ β1 + β2 is the slope of the line fit for values X̃i > 0 (above
the cutoff, the side with treatment).

We can also fit polynomials in a similar way (for quadratic: two
terms X̃ and X̃

2
, then the same two terms interacted with D).
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