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Linear Regression

Yi = β0 + β1Xi⏟⏟⏟⏟⏟
best-fit line

+εi
β0 is the intercept of the
line: expected value of Y
when X = 0.

β1 is the slope/coefficient:
for a one unit increase in X,
there is an expected 𝛽1
change in Y.

εi is the error: points will not
be exactly on the line, and
this represents how far
individual i’s Y value is from
the line.
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Multiple Linear Regression

We can have multiple independent variables X1, X2, … , Xp:

Yi = β0 + β1Xi1 + β2Xi2 + ⋯ + βpXip⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
regression best-fit hyperplane (p-dimensional)

+εi

▶ For any βj = β1, … , βp: for a one unit increase in Xj, there is
an expected βj change in Y, holding all other independent
variables constant.

We can also write the same regression in matrix form in two ways:

Yi = X⊤
i βββ + 𝜀i ⟺ y = Xβββ + εεε
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Fitted Values

The previous two slides introduced the population model -
i.e. the true relationship between independent and dependent
variables in the population.

▶ We often do not observe the population, so we have to use
our sample to create estimates β̂0, β̂1, … , β̂p and ε̂i.

▶ Once we estimate with our sample, we can generate our
“fitted” model (fitted values), which is our sample-estimated
best-fit prediction line.

Ŷi = β̂0 + β̂1Xi1 + β̂2Xi2 + ⋯ + β̂pXip
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Estimating β̂0, … , β̂p

SSE = ∑(Yi – Ŷi)2 We want to find values for
β̂0, … , β̂p that minimise the
sum of squared (prediction)
errors.

Makes sense: we want our
fitted line to have as little
prediction error as possible to
capture the true relationships.

Why squared? We don’t care
about positive or negative
errors, just the size of errors.
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OLS Estimator

We want to find β̂0, … , β̂p values that minimise the sum of
squared errors:

minimise: SSE( ̂βββ) = ∑(Yi – Ŷi)2 = (y – ŷ)⊤(y – ŷ)⏟⏟⏟⏟⏟⏟⏟
linear algebra form

Do some linear algebra, take the derivative in respect to ̂βββ, and you
will get the solutions:

̂βββ = (X⊤X)–1X⊤y

Vector ̂βββ will contain estimated values for β̂0, … , β̂p.
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Estimators and Uncertainty

We usually only have a sample of individuals from the population,
when we estimate β̂.

▶ What if we had a different sample with different individuals?
We would get different β̂ estimate.

▶ So we have to account for sampling uncertainty.
▶ Sampling distribution: imagine you take a sample, estimate

β̂. then take another hypothetical sample, and another. The
distribution of estimates is the sampling distribution.

▶ Standard deviation of a sampling distribution is the standard
error of the estimate.
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Unbiasedness and Variance

If the expected value of the sampling distribution 𝔼[β̂] is equal to
the true population value β (that we do not know), then the
estimator is considered unbiased.

▶ That means on average, any estimate with any random
sample we run will have an expected value of the true
population value.

▶ Thus, we want an unbiased estimator, since any specific
estimate with any specific sample will be on average, correct.

We generally prefer unbiased estimators that have low variance.
▶ If our estimator is unbiased, and the variance is low, that

means any individual estimate is close to the true population
value.
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Gauss-Markov: Unbiasedness

Gauss-Markov theorem (at least part of it) states that OLS is an
unbiased estimator of the true β̂ under the following conditions.

1. Linearity in parameters: The true relationship between X
and Y can be represented by some form of y = Xβββ + 𝜀𝜀𝜀.

2. Random Sampling: Random sample from a population.

3. No Perfect Multicollineraity: No 100% (exact) linear
correlations between explanatory variables.

4. Strict Exogeneity: Formally defined as 𝔼[εεε|X] = 0. This
implies that Cov(ε, Xj) = 0 for any explanatory variable Xj.
Violations to exogeneity are often caused by omitted
confounders.
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Variance (Heteroscedasticity)

The estimated variance of the OLS estimator (under
heteroscedasticity):

V̂ar( ̂βββ|X) = (X⊤X)–1X⊤
⎛⎜⎜⎜
⎝

ε̂2
1 0 … 0

0 ε̂2
2 … 0

⋮ … ⋱ 0
0 0 … ε̂2

i

⎞⎟⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟

ε variance matrix

X(X⊤X)–1

The standard error estimate of β̂, ŝe(β̂) is the square root of the
estimated variance.

▶ Sometimes, we will use other standard errors, like clustered
standard errors. These have a different 𝜀 variance matrix.
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Hypothesis Testing

There is uncertainty in our estimates of any coefficient β̂j. How do
we know the true β is not 0 with just our sample estimate (our
null: H0 ∶ βj = 0)? We calculate a t-test statistic:

t = β̂j

ŝe(β̂j)

Then, we use the t-test statistic and a t-distribution with n – p – 1
degrees of freedom to calculate the p-value.

▶ p-value is the probability the null is true (βj = 0), given our
estimate β̂j. If this is lower than 5%, the null is unlikely, so we
reject the null and conclude there is significant relationship
between Xj and Y.
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