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Controlling for Confounders

In lecture 1, we briefly discussed how one way to identify causal
effects is to control/account for all confounding variables.

▶ This is usually not a recommended strategy - it is almost
impossible to control for every possible confounder. Many
confounders are unobserved and not measurable as well.

However, if no other previous method is possible, we can fall back
on controlling confounders - called selection on observables.

▶ Idea of controlling for confounders: if all confounders are
accounted for, then treatment is as-if randomly
assigned/exogenous (as explained in lecture 1).

▶ Thus, to identify causal effects, we should compare treated
vs. control units with the same confounder values.
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Assumptions of Selection on Observables

We need to meet two assumptions in order to conduct selection on
observables designs.

1. Conditional Independence/Exogeneity/Ignorability:
basically, you have controlled for all confounders. More
technically, it means treatment is as-if randomly assigned
when holding confounders constant.

2. Common Support: essentially, no matter the confounder
values, any unit always has a chance of being assigned to
either treatment or control. In other words, under no
confounder values are you guaranteed (100%) to be in
treatment or control.

Conditional independence is very hard to meet - you need every
possible confounder (including ones that cannot be measured).
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Regression and Specification Issues
One (simple and common) way to control for confounders is
regression:

Yi = α̂ + Diτ̂ + X⊤
i

̂βββ + ε̂i

Linear regression assumes a linear relationship between
independent and dependent variables.

▶ For binary variables (like Di), this does not matter. But for
continuous variables (like many confounders), this can be a
problematic assumption. Not all confounders have linear
relationships with the outcome.

▶ You might ask? Well we could just add a quadratic/log
transformation. Issue - we have to choose what relationship to
use. If we choose wrong, our causal estimates will be wrong.
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Regression and Heterogeneity Issues
When we hold confounders constant, treatment is exogeneous.
Thus, τATE|X (effect given confounders X) is identified. To get the
overall τATE, we weight all of τATE|X for each value of X together:

τATE = ∫(τATE|X) ⋅ d Pr(X)
⏟⏟⏟⏟⏟⏟⏟⏟⏟

weighted average of τ|X

Issue: Angrist (1998) show that OLS estimate of 𝜏 equals:

τOLS = ∫(τATE|X) ⋅ d Var(Di|Xi)Pr(Xi)
∑Xc Var(Di|Xc)Pr(Xc)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

weight

The weight of τOLS is clearly not equal to τATE. Thus, if there is
any treatment heterogeneity, OLS will not estimate the ATE.
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Solution to Regression Issues

So OLS regression assumes linear relationships between X and Y,
and also is not accurately estimating the ATE when there is
treatment heterogeneity.

How to solve this issue?

1. Use an adjusted regression framework, like Lin (2013) fully
interacted estimator. This solves the
heterogeneity/weighting problem, but does not completely
solve the linear relationships problem.

2. Use a non-parametric (not equation/model based) method,
like matching or weighting.

We will focus on matching, the most common and intuitive
method in modern causal inference.
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Intuition of Matching

τi = Yi(1) – Yi(0)

For treated individuals, Yi(0) is the unobserved counterfactual.
Matching is about estimating Yi(0).
Selection on observables says we should control for confounders by
comparing treated and untreated individuals with the same
confounder values.

Solution: Matching. For each treated unit i in our data, find an
untreated unit j with the same/similar confounder values.

▶ Use unit j’s observed untreated outcome Yj(0) to estimate the
missing Yi(0) counterfactual of the treated unit.

▶ Then we can estimate 𝜏i for all treated units. Average them
all together, and we get the 𝜏ATT.
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Distance (Nearest-Neighbour) Matching

How do we find a untreated unit with “similar” confounder values.
Distance Matching is a solution to this issue.

1. Graph all units confounder values on a multi-dimensional
graph. (ex. 2 confounders, 2 axis, plot all units confounders
values).

2. For each treated unit, find the untreated unit whose
confounder values is closest by multi-dimensional distance.
That is the match.

Usually, we use mahalanobis distance (a standardised form of
standard euclidean distance).

Issue: curse of dimensionality - basically, the more confounders we
have, the less close matches we will have. That means we will be
comparing units with different confounder values, causing bias.
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Propensity Score Matching

Propensity score matching is about matching units together that
have similar likelihoods of being treated, according to their
confounder values.

▶ Remember, confounders cause selection into treatment - so
we should be able to predict the probability of a unit being
treated by their confounder values.

This likelihood of being treated is called a propensity score 𝜋.
They are estimated with a logistic regression:

log ( 𝜋
1 – 𝜋) = β0 + β1Xi1 + β2Xi2 + ⋯ + βpXip

Then, we match treated to untreated units based on the closest
propensity score estimates ̂𝜋.
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Testing Assumptions in Matching
In matching, we can test our conditional independence/exogeneity
assumption with a balance test.

▶ These are very similar to the ones in randomised experiments.

After all, once we are done with the matching process, we should
have each treated unit matched to a similar untreated unit. Thus,
we have a treated group and a control group.

We can then check if key confounder values between these two
groups are similar using a regression:

Xi = β0 + β1Di + εi

▶ 𝛽1 is the difference in Xi value between treated and control
groups. If it is insignificant, we can conclude the assumption
is met.
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Other Estimation Methods
1. Genetic Matching: basically distance matching, but we also

estimate a weights matrix W that puts different weights on
different confounders to achieve the best balance between
treatment and control. Performs better than propensity
score/distance matching.

2. Inverse Probability Weighting: uses propensity scores to
weight observations differently to remove selection bias.
Uncovers the ATE.

3. Lin (2013) Regression Adjustment: Adjusts regression with
interactions to solve the heterogeneity issue of OLS. Uncovers
the ATE.

4. Doubly-Robust: Combines weighting with regression
adjustment (hence doubly), shown to be more robust and
reliable (also the estimator used in Callaway Sant’Anna DiD
estimator).
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