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Potential Outcomes

We want to find the effect of a binary treatment D on an outcome Y.

Imagine two hypothetical worlds that are identical, except for treatment D:

World 0: individual i does not get the treatment. Di = 0
World 1: individual i gets the treatment Di = 1.

Lets imagine their outcome values in each hypothetical world are as follows:

World 0 no treatment: Yi(0).
World 1 with treatment Yi(1).

Yi(0) and Yi(1) are called the potential outcomes of the hypothetical worlds.
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Causal Effect

The two hypothetical worlds are identical except for treatment D.

Thus, any difference in their outcome values Yi(0) and Yi(1) must be caused by the difference
in treatment.

τi = Yi(1) – Yi(0)

Issue: there isn’t actually two hypothetical worlds.

In the real world, individual i either has the treatment Di = 1, or does not have the
treatment Di = 0.

Thus, we always are missing one of Yi(1) or Yi(0). The one we observe is the real Yi
value. The missing one is called a counterfactual.

Fundamental Problem of Causal Inference: the causal effect requires us to know both
potential outcomes, but we never see both.
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Causal Estimands

𝜏i is the individual causal effect for individual i. We are often interested in group causal effects:
1 Average Treatment Effect (ATE):

𝔼[τi] = 𝔼[Yi(1) – Yi(0)]
2 Average Treatment Effect on the Treated (ATT): average for only those who receive

treatment.

𝔼[τi|Di = 1] = 𝔼[Yi(1) – Yi(0)|Di = 1]
3 Conditional/Local Average Treatment Effect (CATE/LATE): average based on

some condition of X.

𝔼[τi|Xi = 1] = 𝔼[Yi(1) – Yi(0)|Xi = 1]
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Correlation not Causation

Correlation ρ is when we don’t consider potential outcomes, but simply compare those who are
treated to those who are not treated. Mathematically:

𝜌D,Y = 𝔼[Yi|Di = 1] – 𝔼[Yi|Di = 0]
= 𝔼[Yi(1)|Di = 1] – 𝔼[Yi(0)|Di = 0]
= 𝔼[Yi(1)|Di = 1] – 𝔼[Yi(0)|Di = 0] + 𝔼[Yi(1)|Di = 1] – 𝔼[Yi(1)|Di = 1]
= 𝔼[Yi(1)|Di = 1] – 𝔼[Yi(1)|Di = 1]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ATT

+ 𝔼[Yi(0)|Di = 1] – 𝔼[Yi(0)|Di = 0]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Selection Bias

We can see that correrlation equals ATT + Selection Bias.

Read: Correlation does not equal causation (ATT) unless selection bias equals 0.
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Selection Bias

Recall correlation = ATT + Selection bias. What is selection bias?

Selection Bias = 𝔼[Yi(0)|Di = 1] – 𝔼[Yi(0)|Di = 0]

What does this mean? The two parts:
1 Hypothetical Yi(0) for those who did receive the treatment Di = 0.
2 Hypothetical Yi(0) for those who did not receive the treatment Di = 0.

Recall Yi(0) is hypothetical Yi without treatment. What this means is:

Selection bias is the difference before (without) treatment between the treatment group
Di = 1 and treated group Di = 0.
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Confounders

What causes selection bias?

Read: what causes pre-existing differences between treatment Di = 1 and control Di = 0?

Confounders: a variable X that meets two conditions:
1 X causes D.

Read: individuals with different values of X have different likelihoods of being assigned to
Di = 1 or Di = 0

2 X is correlated with Y.

Read: X is associated with the values of Y.

Thus, since X is associated with Y, and different values of X have different likelihoods of being
assigned to D, then D will have different Y values if X is a confounder.
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Exogeneity (1)

Recall OLS is only unbiased if strict exogeneity is met Cov(X, ε) = 0.

Why would X and ε be correlated? Imagine this “true” regression with independent variables
X and Z that are correlated:

Yi = β0 + β1Xi + β2Zi + εi

Now imagine we forget to include Z in our regression:

Yi = γ0 + γ1Xi + ui

Now the error term ui contains Zi (since error term is everything that explains Y that is not in
our regression).

But X and Z are correlated. Since Z is a part of ui, then X and ui are correlated, violating
exogeneity. The estimate of γ1 would be biased.
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Controlling

Here is our regression of treatment D on outcome Y:

Yi = α + τDi + εi

Confounders X is correlated with D by definition.

Thus, if we do not include confounder X in our regression, it will be contained in εi, violating
exogeneity, and thus creating a biased estimate.

This matches with the idea of selection bias: not accounting for X means correlation does
not equal causation.

Easy solution: add all confounders into regression to meet exogeneity and acheive unbiased
estimates:

Yi = α + τDi + βXi + εi
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Unobservable Confounders

Sounds simple, just control for all confounders X? Then we can get unbiased causal estimates?

Unfortunately, we often run into issues:
1 Confounder X might be impossible/difficult to measure (ex. happiness).
2 We might not have data on X.
3 We might not know all confounders X. There is no magic test to tell us what is a

confounder.

Even missing just one X will bias our results.

Thus, the field of causal inference exists to find creative ways to get causal estimates.
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Random Experiments

The “best” way to isolate causal effects is with random assignment of treatment Di.

Our issue is that confounders X cause who gets treatment D.

If we randomly assign people to treatment D, then it is randomness causing D, and no
longer X.

Thus, random assignment solves confounder problems and ensures exogeneity, allowing us to
run a simple regression to find causal effects:

Yi = α + τDi + εi

Issues:
1 You can’t always run randomised experiments. You need to control D, and that can be

costly/impractical.
2 Even if you randomly assign Di, how do you force everyone to follow their assignment?

11 / 12



Observational Studies

We saw random experiments can be difficult to run. Thus, the field of causal inference has
designed different techniques to estimate causal effects.

1 Difference-in-Differences (DiD): exploiting variation in treatment adoption over time
and between individuals.

DiD is the most popular method right now, and has seen rapid advancement in
techniques in the past few years.

2 Instrumental Variables (IV): exploiting instruments to estimate causal effects.

Becoming less popular due to concerns over assumptions
3 Regression Discontinuity Design (RDD): exploiting cut-offs in treatment assignment to

estimate causal effects.

Probably the most “convincing” method, but only applicable to certain scenarios.

All methods require assumptions. We should always ask if these assumptions are met.
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