

Simple Econometric Theory Review

Applied Econometrics Resources

Kevin Li

Model Specification

For independent variables X_1, X_2, \dots, X_p , and outcome variable Y for units $i = 1, 2, \dots, n$:

$$Y_i = \underbrace{\beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_p X_{ip}}_{\mathbb{E}[Y_i | X_i]} + \varepsilon_i$$

$\beta_0, \beta_1, \dots, \beta_p$ are parameters that describe the deterministic part of the relationship between Y and X_1, \dots, X_p .

- Read: the part of Y explained by X_1, \dots, X_p .

ε_i error term is the non-deterministic relationship between Y and X_1, \dots, X_p .

- Read: part of Y **not** explained by X_1, \dots, X_p .
- $\mathbb{E}[\varepsilon] = 0$

Matrix Form

Condensed form:

$$y_i = \mathbf{x}'_i \boldsymbol{\beta} + \varepsilon_i, \quad \mathbf{x}_i = \begin{pmatrix} 1 \\ x_{i1} \\ x_{i2} \\ \vdots \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \end{pmatrix}$$

Even more condensed matrix form:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}, \quad \boldsymbol{\varepsilon} = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

Sum of Squared Errors

Naturally, we want to choose the values b_0, \dots, b_p for the unknown β_0, \dots, β_p that **minimise** the sum (squared) error of predicted \hat{Y}_i in respect to the true population.

- Actual true Y values: Y_i , with unknown β
- Predicted \hat{Y} values, with some choice of β value of b .

Thus, the sum (squared) error is the sum of the differences between actual Y_i and predicted \hat{Y}_i :

$$SSE = \sum (Y_i - \hat{Y}_i)^2 = (\mathbf{y} - \hat{\mathbf{y}})'(\mathbf{y} - \hat{\mathbf{y}})$$

Why squared?

- ① gets rid of direction, only keeps magnitude
- ② Easier for calculus as absolute value function is non-differentiable at vertex.
- ③ Nice properties (see later in the slides).

Ordinary Least Squares

Re-arrange SSE:

$$\begin{aligned}\text{SSE} &= (\mathbf{y} - \hat{\mathbf{y}})'(\mathbf{y} - \hat{\mathbf{y}}) \\ &= (\mathbf{y} - \mathbf{X}\mathbf{b})'(\mathbf{y} - \mathbf{X}\mathbf{b}) \\ &= \mathbf{y}'\mathbf{y} - \mathbf{y}'\mathbf{X}\mathbf{b} - \mathbf{b}'\mathbf{X}'\mathbf{y} + \mathbf{b}'\mathbf{X}'\mathbf{X}\mathbf{b}\end{aligned}$$

We want to minimise the SSE, so take the derivative in respect to \mathbf{b} and set equal to 0:

$$\frac{\partial \text{SSE}}{\partial \mathbf{b}} = -2\mathbf{X}'\mathbf{y} + 2\mathbf{X}'\mathbf{X}\mathbf{b} = 0$$

Re-arrange the equation to get

$$\begin{aligned}\mathbf{b} &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} \\ \implies \hat{\mathbf{b}} &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}\end{aligned}$$

Estimator Properties

When we estimate β (or any parameter), we typically use a sample of the population.

- What if we used a different sample to calculate the parameter? We would get a slightly different $\hat{\beta}$ estimate since the sample data is slightly different.

Sampling distribution is the distribution of all estimated $\hat{\beta}$ from different samples, taking an infinite number of samples.

- Imagine you take one sample, and estimate $\hat{\beta}$. Then, take another sample and estimate $\hat{\beta}$. Then again and again. Plot all of the $\hat{\beta}$ in a distribution to get the sampling distribution.

Unbiasedness is if the expected value of the sampling distribution equals the true population value of β . In other words: $\mathbb{E}[\hat{\beta}] = \beta$.

Standard Error is the standard deviation of the sampling distribution.

Unbiasedness of OLS (1)

Theorem: Part of the **Gauss-Markov Theorem** states that under 4 conditions, the OLS estimate of β is **unbiased**: $\mathbb{E}[\hat{\beta}] = \beta$

- ① The population model can be expressed as a linear model $y = X\beta + \epsilon$.
- ② i.i.d sampling from population.
- ③ No perfect multicollinearity. Basically, X must be full-rank.
- ④ **Strict Exogeneity**: Formally defined as $\mathbb{E}[\epsilon | X] = 0$.

This implies that $\text{Cov}(\epsilon, X_j) = 0$ for any explanatory variable $X_j = X_1, \dots, X_p$.

Violations of strict exogeneity often caused by omitted confounders (see causal frameworks).

Unbiasedness of OLS (2)

Proof:

$$\begin{aligned}\hat{\beta} &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} \\ &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\beta + \boldsymbol{\varepsilon}) \\ &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\beta + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\varepsilon} \\ &= \beta + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\varepsilon}\end{aligned}$$

Now we want to prove $\mathbb{E}[\hat{\beta}] = \beta$. So we want to take the expected value of $\hat{\beta}$:

$$\begin{aligned}\mathbb{E}[\hat{\beta}|\mathbf{X}] &= \mathbb{E}[\beta + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\varepsilon}|\mathbf{X}] \\ \implies \mathbb{E}[\hat{\beta}|\mathbf{X}] &= \beta + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbb{E}[\boldsymbol{\varepsilon}|\mathbf{X}]\end{aligned}$$

Unbiasedness of OLS (3)

$$\mathbb{E}[\hat{\beta}|\mathbf{X}] = \beta + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbb{E}[\boldsymbol{\varepsilon}|\mathbf{X}]$$

Recall Gauss-Markov condition (4), strict exogeneity: $\mathbb{E}[\boldsymbol{\varepsilon}|\mathbf{X}] = 0$. Thus:

$$\mathbb{E}[\hat{\beta}|\mathbf{X}] = \beta + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(0) = \beta$$

Finally, law of iterated expectations (LIE) gets us:

$$\mathbb{E}[\hat{\beta}] = \mathbb{E}[\mathbb{E}[\hat{\beta}]] = \beta$$

Thus, we have shown $\mathbb{E}[\hat{\beta}] = \beta$, proving OLS is an unbiased estimator of the true β population parameters under 4 gauss-markov conditions.

Variance of OLS (1)

Start with our solution:

$$\begin{aligned}\hat{\beta} &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} \\ &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\beta + \boldsymbol{\varepsilon}) \\ &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\beta + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\varepsilon} \\ &= \beta + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\varepsilon}\end{aligned}$$

β is a constant population value, so it is not the variance. Thus, the variance of the estimator comes from 2nd term:

$$\begin{aligned}\text{Var}[\hat{\beta}|\mathbf{X}] &= \text{Var}[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\varepsilon}|\mathbf{X}] \\ \implies \text{Var}[\hat{\beta}|\mathbf{X}] &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\text{Var}[\boldsymbol{\varepsilon}|\mathbf{X}][(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\varepsilon}]^{-1} \\ \implies \text{Var}[\hat{\beta}|\mathbf{X}] &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\text{Var}[\boldsymbol{\varepsilon}|\mathbf{X}]\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\end{aligned}$$

Variance of OLS (2)

Homoscedasticity assumption:

$$\text{Var}[\boldsymbol{\varepsilon} | \mathbf{X}] = \sigma^2 \mathbf{I} = \begin{pmatrix} \sigma^2 & 0 & 0 & \dots \\ 0 & \sigma^2 & 0 & \dots \\ 0 & 0 & \sigma^2 & \vdots \\ \vdots & \vdots & \dots & \ddots \end{pmatrix}$$

- Read: no matter the value of \mathbf{X} , the error term ε has the same constant variance σ^2 .

If homoscedasticity assumption is true, we can plug this into our OLS variance formula:

$$\begin{aligned}\text{Var}[\hat{\boldsymbol{\beta}} | \mathbf{X}] &= (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \text{Var}[\boldsymbol{\varepsilon} | \mathbf{X}] \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1} \\ &= (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \sigma^2 \mathbf{I} \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1} \\ &= \sigma^2 (\mathbf{X}'\mathbf{X})^{-1}\end{aligned}$$

Variance of OLS (3)

Alternatively, we can weaken this assumption to **heteroscedasticity**: where the error term variance depends on unit i's \mathbf{X} values:

$$\text{Var}[\boldsymbol{\epsilon} | \mathbf{X}] = \sigma^2 \mathbf{I} = \begin{pmatrix} \sigma_1^2 & 0 & 0 & \dots \\ 0 & \sigma_2^2 & 0 & \dots \\ 0 & 0 & \sigma_i^2 & \vdots \\ \vdots & \vdots & \dots & \ddots \end{pmatrix}$$

Our variance of OLS once plugging in is:

$$\text{Var}[\hat{\boldsymbol{\beta}} | \mathbf{X}] = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \begin{pmatrix} \sigma_1^2 & 0 & 0 & \dots \\ 0 & \sigma_2^2 & 0 & \dots \\ 0 & 0 & \sigma_i^2 & \vdots \\ \vdots & \vdots & \dots & \ddots \end{pmatrix} \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1}$$

Hypothesis Testing

We do not know the values of σ^2 or σ_i^2 . Thus, we use estimates of them involving our residuals $\hat{\varepsilon}_i$.

Using these estimates, we can find the estimated variance and standard error. From this, we can conduct hypothesis testing with t-tests.

$$t = \frac{\hat{\beta}_j - H_0}{\widehat{se}(\hat{\beta}_j)}, \quad \text{for } \hat{\beta}_j \in \hat{\beta}_0, \dots, \hat{\beta}_p$$

- Where H_0 is the null (usually 0).

We can then calculate p-value: probability the null is true given our estimate $\hat{\beta}_j$.

Note: hypothesis testing is only approximate if ε is not normally distributed (will be achieved in large sample sizes due to CLM). Consider bootstrap inference for small samples.

Geometrics of OLS (1)

Our predicted values of \hat{Y}_i are defined as following:

$$\hat{y} = \mathbf{X}\mathbf{b} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

Let us define projection matrix \mathbf{P} as:

$$\mathbf{P} := \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$$

- \mathbf{P} is symmetrical $\mathbf{P}' = \mathbf{P}$, and idempotent $\mathbf{P}\mathbf{P} = \mathbf{P}$.

Thus, we can rewrite our predicted values as:

$$\hat{y} = \mathbf{P}\mathbf{y}$$

Thus, \mathbf{P} is projecting $\mathbf{y} \rightarrow \hat{\mathbf{y}}$.

Geometrics of OLS (2)

Let us define residual maker matrix \mathbf{M} :

$$\mathbf{M} := \mathbf{I} - \mathbf{P} = \mathbf{I} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$$

- \mathbf{M} is also symmetrical and idempotent.
- \mathbf{M} is orthogonal to \mathbf{P} and \mathbf{X} , meaning $\mathbf{P}\mathbf{X} = \mathbf{M}\mathbf{X} = 0$. You can prove this on your own, it is pretty simple.

Our error between \mathbf{Y}_i and $\hat{\mathbf{Y}}_i$ is $\hat{\epsilon}_i$:

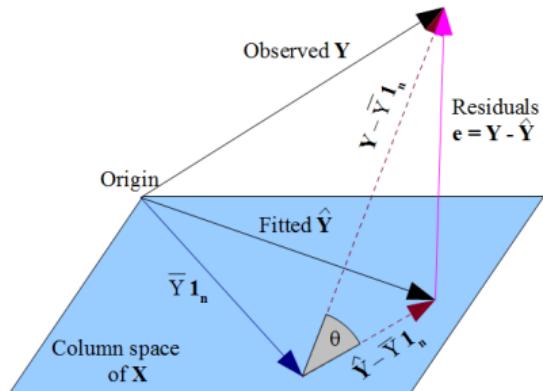
$$\begin{aligned}\hat{\epsilon} &= \mathbf{y} - \hat{\mathbf{y}} = \mathbf{y} - \mathbf{P}\mathbf{y} \\ &= (\mathbf{I} - \mathbf{P})\mathbf{y} \\ &= \mathbf{M}\mathbf{y}\end{aligned}$$

Thus, \mathbf{M} is projecting $\mathbf{y} \rightarrow \hat{\epsilon}$.

Geometrics of OLS (3)

We know that predicted \hat{y} is some linear combination of \mathbf{X} (explanatory variables X_1, \dots, X_p), since $\hat{y} = \mathbf{X}\mathbf{b}$.

Thus, \mathbf{P} projects \mathbf{y} into a vector $\hat{\mathbf{y}}$ that is in a space spanned by \mathbf{X} (column space of \mathbf{X}).



\mathbf{M} projects vector \mathbf{y} into vector \mathbf{e} (error), which is perpendicular to the column space of \mathbf{X} .

- Read: strict exogeneity: error term should not be correlated with \mathbf{X} .