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Model Specification

For independent variables X1, X2, … , Xp, and outcome variable Y for units i = 1, 2, … , n:

Yi = β0 + β1Xi1 + β2Xi2 + ⋯ + βpXip⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝔼[Yi|Xi]

+εi

β0, β1, … , βp are parameters that describe the deterministic part of the relationship between Y
and X1, … , Xp.

Read: the part of Y explained by X1, … , Xp.

εi error term is the non-deterministic relationship between Y and X1, … , Xp.

Read: part of Y not explained by X1, … , Xp.
𝔼[εεε] = 0
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Matrix Form

Condensed form:

yi = x′
i βββ + εi, xi =

⎛⎜⎜⎜
⎝

1
xi1
xi2
⋮

⎞⎟⎟⎟
⎠

, βββ =
⎛⎜⎜⎜
⎝

β0
β1
β2
⋮

⎞⎟⎟⎟
⎠

Even more condensed matrix form:

y = Xβββ + εεε, y =
⎛⎜⎜⎜
⎝

y1
y2
⋮

yn

⎞⎟⎟⎟
⎠

, X =
⎛⎜⎜⎜⎜
⎝

1 x11 x12 … x1p
1 x21 x22 … x2p
⋮ ⋮ ⋮ ⋮ ⋮
1 xn1 xn2 … xnp

⎞⎟⎟⎟⎟
⎠

,βββ =
⎛⎜⎜⎜
⎝

β0
β1
⋮

βp

⎞⎟⎟⎟
⎠

,εεε =
⎛⎜⎜⎜
⎝

ε1
ε2
⋮

εn

⎞⎟⎟⎟
⎠
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Sum of Squared Errors

Naturally, we want to choose the values b0, … , bp for the unknown β0, … , βp that minimise
the sum (squared) error of predicted Ŷi in respect to the true population.

Actual true Y values: Yi, with unknown β
Predicted Ŷ values, with some choice of β value of b.

Thus, the sum (squared) error is the sum of the differences between actual Yi and predicted Ŷi:

SSE = ∑(Yi – Ŷi)2 = (y – ŷ)′(y – ŷ)

Why squared?
1 gets rid of direction, only keeps magnitude
2 Easier for calculus as absolute value function is non-differentiable at vertex.
3 Nice properties (see later in the slides).
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Ordinary Least Squares
Re-arrange SSE:

SSE = (y – ŷ)′(y – ŷ)
= (y – Xb)′(y – Xb)
= y′y – y′Xb – b′X′y + b′X′Xb

We want to minimise the SSE, so take the derivative in respect to b and set equal to 0:

𝜕SSE
𝜕b = –2X′y + 2X′Xb = 0

Re-arrange the equation to get

b = (X′X)–1X′y

⟹ ̂βββ = (X′X)–1X′y
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Estimator Properties

When we estimate β (or any parameter), we typically use a sample of the population.

What if we used a different sample to calculate the parameter? We would get a slightly
different β̂ estimate since the sample data is slightly different.

Sampling distribution is the distribution of all estimated β̂ from different samples, taking an
infinite number of samples.

Imagine you take one sample, and estimate β̂. Then, take another sample and estimate β̂.
Then again and again. Plot all of the β̂ in a distribution to get the sampling distribution.

Unbiasedness is if the expected value of the sampling distribution equals the true population
value of β. In other words: 𝔼[ ̂βββ] = βββ.

Standard Error is the standard deviation of the sampling distribution.
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Unbiasedness of OLS (1)

Theorem: Part of the Gauss-Markov Theorem states that under 4 conditions, the OLS
estimate of β is unbiased: 𝔼[ ̂βββ] = βββ

1 The population model can be expressed as a linear model y = Xβββ + εεε.
2 i.i.d sampling from population.
3 No perfect multicollinearity. Basically, X must be full-rank.
4 Strict Exogeneity: Formally defined as 𝔼[εεε|X] = 0.

This implies that Cov(ε, Xj) = 0 for any explanatory variable Xj = X1, … , Xp.

Violations of strict exogeneity often caused by omitted confounders (see causal frameworks).
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Unbiasedness of OLS (2)

Proof:

̂βββ = (X′X)–1X′y
= (X′X)–1X′(Xβββ + εεε)
= (X′X)–1X′Xβββ + (X′X)–1X′εεε
= βββ + (X′X)–1X′εεε

Now we want to prove 𝔼[ ̂βββ] = βββ. So we want to take the expected value of ̂βββ:

𝔼[ ̂βββ|X] = 𝔼[βββ + (X′X)–1X′εεε|X]
⟹ 𝔼[ ̂βββ|X] = βββ + (X′X)–1X′𝔼[εεε|X]
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Unbiasedness of OLS (3)

𝔼[ ̂βββ|X] = βββ + (X′X)–1X′𝔼[εεε|X]

Recall Gauss-Markov condition (4), strict exogeneity: 𝔼[εεε|X] = 0. Thus:

𝔼[ ̂βββ|X] = βββ + (X′X)–1X′(0) = βββ

Finally, law of iterated expecations (LIE) gets us:

𝔼[ ̂βββ] = 𝔼[𝔼[ ̂βββ]] = βββ

Thus, we have shown 𝔼[ ̂βββ] = βββ, proving OLS is an unbiased estimator of the true β population
parameters under 4 gauss-markov conditions.
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Variance of OLS (1)
Start with our solution:

̂βββ = (X′X)–1X′y
= (X′X)–1X′(Xβββ + εεε)
= (X′X)–1X′Xβββ + (X′X)–1X′εεε
= βββ + (X′X)–1X′εεε

βββ is a constant population value, so it is not the variance. Thus, the variance of the estimator
comes from 2nd term:

Var[ ̂βββ|X] = Var[(X′X)–1X′εεε|X]
⟹ Var[ ̂βββ|X] = (X′X)–1X′Var[εεε|X][(X′X)–1X′εεε]–1

⟹ Var[ ̂βββ|X] = (X′X)–1X′Var[εεε|X]X(X′X)–1
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Variance of OLS (2)
Homoscedasticity assumption:

Var[εεε|X] = 𝜎2I =
⎛⎜⎜⎜
⎝

𝜎2 0 0 …
0 𝜎2 0 …
0 0 𝜎2 ⋮
⋮ ⋮ … ⋱

⎞⎟⎟⎟
⎠

Read: no matter the value of X, the error term ε has the same constant variance 𝜎2.

If homoscedasticity assumption is true, we can plug this into our OLS variance formula:

Var[ ̂βββ|X] = (X′X)–1X′Var[εεε|X]X(X′X)–1

= (X′X)–1X′𝜎2IX(X′X)–1

= 𝜎2(X′X)–1
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Variance of OLS (3)

Alternatively, we can weaken this assumption to heteroscedasticity: where the error term
variance depends on unit i’s X values:

Var[εεε|X] = 𝜎2I =
⎛⎜⎜⎜
⎝

𝜎2
1 0 0 …

0 𝜎2
2 0 …

0 0 𝜎2
i ⋮

⋮ ⋮ … ⋱

⎞⎟⎟⎟
⎠

Our variance of OLS once plugging in is:

Var[ ̂βββ|X] = (X′X)–1X′
⎛⎜⎜⎜
⎝

𝜎2
1 0 0 …

0 𝜎2
2 0 …

0 0 𝜎2
i ⋮

⋮ ⋮ … ⋱

⎞⎟⎟⎟
⎠

X(X′X)–1
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Hypothesis Testing

We do not know the values of 𝜎2 or 𝜎2
i . Thus, we use estimates of them involving our

residuals ε̂i.

Using these estimates, we can find the estimated variance and standard error. From this, we
can conduct hypothesis testing with t-tests.

t = β̂j – H0
ŝe(β̂j)

, for β̂j ∈ β̂0, … , β̂p

Where H0 is the null (usually 0).

We can then calculate p-value: probability the null is true given our estimate β̂j.

Note: hypothesis testing is only approximate if ε is not normally distributed (will be achieved
in large sample sizes due to CLM). Consider bootstrap inference for small samples.
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Geometrics of OLS (1)

Our predicted values of Ŷi are defined as following:

ŷ = Xb = X(X′X)–1X′y

Let us define projection matrix P as:

P ∶= X(X′X)–1X′

P is symmetrical P′ – P, and idempotent PP = P.

Thus, we can rewrite our predicted values as:

ŷ = Py

Thus, P is projecting y → ŷ.
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Geometrics of OLS (2)
Let us define residual maker matrix M:

M ∶= I – P = I – X(X′X)–1X′

M is also symmetrical and idempotent.

M is orthogonal to P and X, meaning PX = MX = 0. You can prove this on your own,
it is pretty simple.

Our error between Yi and Ŷi is ε̂i:

̂εεε = y – ŷ = y – Py
= (I – P)y
= My

Thus, M is projecting y → ̂εεε.
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Geometrics of OLS (3)

We know that predicted ŷ is some linear combination of X (explanatory variables X1, … , Xp),
since ŷ = Xb.

Thus, P projects y into a vector ŷ that is in a space spanned by X (column space of X).

M projects vector y into vector e (error), which is perpendicular to the column space of X.

Read: strict exogeneity: error term should not be correlated with X.
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